Hyperbolic discounting (A case of time inconsistency)

- Interest rates are higher for longer time horizons.
- Quasi-hyperbolic discounting structure (Laibson 1997): Time is divided into two periods. The present period and all the future periods.
- Payoffs in the current period are discounted by a discounted rate γ.
- Payoffs in a future period which is τ-period ($\tau > 1$) away from the current period is discounted by γ^τ and then further discounted by an additional factor $\lambda \in (0,1)$.

- Interest
- Quasi-linear divided into two periods
- Payoffs
- Payoffs in the current period
Optimal Dividend Strategy with Time-Inconsistent Preferences and Cost Constraints

Zhonghe Li
Joint work with Shutong Chen and Yan Zeng

Sun Yat-sen Business School, Sun Yat-sen University
July 15, 2015
Hyperbolic discounting (A case of time inconsistency)

- Interest rates are higher for longer time horizons.
- Quasi-hyperbolic discounting (Laibson 1997): Time is divided into two periods. The present period and all the future periods.
- Payoffs in the current period are discounted by a discounted rate \(\nu \).
- Payoffs in a future period which is \(t \) period (\(t > 1 \)) away from the current period is discounted by \(\nu \) and then further discounted by an additional factor \(\delta \in (0, 1] \).

- Interest rates are higher for longer time horizons.
- Quasi-hyperbolic discounting (Laibson 1997): Time is divided into two periods. The present period and all the future periods.
- Payoffs in the current period are discounted by a discounted rate \(\nu \).
- Payoffs in a future period which is \(t \) period (\(t > 1 \)) away from the current period is discounted by \(\nu \) and then further discounted by an additional factor \(\delta \in (0, 1] \).
- State space:
 \[x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad a = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \]

- A set of admissible control:
 \[\mathcal{A} = \{ u \in \mathbb{R}^2 : u_t = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \} \]

- Value function in a CTS:
 \[V(x) = \min_{u \in \mathcal{A}} \left\{ \int_0^\infty e^{-\rho t} \left(\frac{1}{2} x_1^2 + u_1^2 \right) dt + 0 \right\} \]

- Subject to state equation (1)-(3):
 \[\frac{dx}{dt} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad x(0) = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} \]

- Stopping time.
SINGAPORE-SUZHOU WORKSHOP ON QUANTITATIVE FINANCE
12 – 13 July 2015, Suzhou
National University of Singapore
Suzhou Research Institute